Hai đường thẳng trong mặt phẳng thì cắt nhau hoặc song song hoặc trùng nhau.
Hai đường thẳng trong mặt phẳng thì cắt nhau hoặc song song hoặc trùng nhau.
Xét vị trí tương đối của hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y = - 2 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = 2{t_2}\\y = - 3 + 2{t_2}\end{array} \right.\)
Xét vị trí tương đối của đường thẳng d: x + 2y – 2 = 0 với mỗi đường thẳng sau:
\({\Delta _1}{\rm{: }}3x{\rm{ }}--{\rm{ }}2y{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\); \({\Delta _2}:{\rm{ }}x{\rm{ }} + {\rm{ }}2y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\); \({\Delta _3}:{\rm{ }}2x{\rm{ }} + {\rm{ }}4y{\rm{ }}--{\rm{ }}4{\rm{ }} = {\rm{ }}0.\)
Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt có vectơ chỉ phương là \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \). Nêu điều kiện về hai vectơ \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) trong môi trường hợp sau:
a) \({\Delta _1}\) cắt \({\Delta _2}\)
b) \({\Delta _1}\)song song với \({\Delta _2}\)
c), \({\Delta _1}\) trùng với \({\Delta _2}\)
Xét vị trí tương đối của mỗi cặp đường thẳng sau
a) \({d_1}:3x + 2y--5 = 0\) và \({d_2}:x - 4y + 1 = 0\) ;
b) \({d_3}:x - 2y + 3 = 0\) và \({d_4}: - {\rm{ }}2x + 4y + 10 = 0\) ;
c) \({d_5}:4x + 2y - 3 = 0\) và \({d_6}:\left\{ \begin{array}{l}x = - \frac{1}{2} + t\\y = \frac{5}{2} - 2t\end{array} \right.\)
Trong mặt phẳng, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) cắt nhau tại A tạo thành bốn góc đỉnh A (quy ước không kể góc bẹt và góc không).
Quan sát Hình 40a và đọc tên một góc nhọn trong bốn góc đó.
Quan sát Hình 40b và nêu đặc điểm bốn góc tại đỉnh A.
Trong thực tiễn, có những tình huống đòi hỏi chúng ta phải xác định vị trí tương đối của hai đường thẳng, giao điểm của hai đường thẳng, … Chẳng hạn: Ở môn thể thao nội dung 10 m súng trường hơi di động, mục tiêu di động trên một đường thẳng b song song với mặt đất 1,4 m; viên đạn di động trên một đường thẳng a (Hình 39). Để bắn trúng mục tiêu, vận động viên phải ước lượng được giao điểm M của a và b sao cho thời gian chuyển động đến điểm M của viên đạn và của mục tiêu là bằng nhau.
Làm thế nào để xác định giao điểm M của hai đường thẳng a và b?
Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng toạ độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (\(t \ge 0\)), vị trí
của tàu A có toạ độ được xác định bởi công thức \(\left\{ \begin{array}{l}x = 3 - 35t\\y = - 4 + 25t\end{array} \right.\) ,vị trí của tàu B có toạ độ là (4 – 30t; 3 – 40t).
a) Tính côsin góc giữa hai đường đi của hai tàu A và B.
b) Sau bao lâu kể từ thời điểm xuất phát hai tàu gần nhau nhất?
c) Nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng bao nhiêu?
Trong mặt phẳng toạ độ, cho đường thẳng \(\Delta \): 2x + y– 4 = 0 và điểm M(-1; 1). Gọi H là hình chiếu của M lên đường thẳng \(\Delta \).
a) Tìm một vectơ chỉ phương của đường thẳng MH.
b) Viết phương trình tham số của đường thẳng MH.
c) Tìm toạ độ của H. Từ đó, tính độ dài đoạn thẳng MH.
Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là\(\overrightarrow {{u_1}} = {\rm{ }}\left( {{a_1};{\rm{ }}{b_1}} \right),{\rm{ }}\overrightarrow {{u_2}} {\rm{ }} = {\rm{ }}\left( {{a_2};{b_2}} \right)\) . Tính \(\cos \left( {{\Delta _1},{\Delta _2}} \right)\).