Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Nếu cắt chậu nước có hình dạng như Hình 4 bằng mặt phẳng song song và cách mặt đáy x (cm), (0 ≤ x ≤ 16) thì mặt cắt là hình tròn có bán kính \(\left(10+\sqrt{x}\right)\) (cm). Tính dung tích của chậu.

Nguyễn Quốc Đạt
29 tháng 10 2024 lúc 23:13

Chọn trục \(Ox\) sao cho \(O\) trùng với tâm của đáy, chiều dương của trục là chiều hướng lên trên.

Khi cắt chậu nước bằng mặt phẳng song song với đáy và cách mặt đáy \(x\), thì mặt phẳng đó cắt trục \(Ox\) tại điểm có hoành độ \(x\). Mặt cắt là hình tròn có bán kính \(\left( {10 + \sqrt x } \right)\) (cm)

Như vậy, diện tích mặt cắt là \(S\left( x \right) = \pi {\left( {10 + \sqrt x } \right)^2} = \pi \left( {x + 100 + 20\sqrt x } \right)\).

Suy ra dung tích của chậu là

\(V = \int\limits_0^{16} {S\left( x \right)dx}  = \int\limits_0^{16} {\pi \left( {x + 100 + 20\sqrt x } \right)dx}  = \pi \left. {\left( {\frac{{{x^2}}}{2} + 100x + 20.\frac{2}{3}\sqrt {{x^3}} } \right)} \right|_0^{16} = \frac{{7744}}{3}\pi \) (\({\rm{c}}{{\rm{m}}^3}\)).