gọi số học sinh nữa là \(x\) \(\left(1\le x\le29;x\in Z\right)\)
\(\Rightarrow\) số học sinh nam là \(30-x\)
ta có : số cách để chọn 3 học sinh từ 30 học sinh là : \(C^3_{30}=4060\)
số cách để chọn 2 học sinh nam từ \(30-x\) học sinh nam là : \(C^2_{30-x}\)
số cách để chọn 1 học sinh nữ từ \(x\) học sinh nữ là : \(x\)
\(\Rightarrow\) sác xuất chọn được 2 nam và 1 nữ là : \(P=\dfrac{\left|\Omega_A\right|}{\left|\Omega\right|}=\dfrac{x.C^2_{30-x}}{4060}=\dfrac{12}{29}\)
\(\Leftrightarrow\dfrac{\dfrac{x\left(30-x\right)!}{2!\left(30-x-2\right)!}}{4060}=\dfrac{12}{29}\) \(\Leftrightarrow\dfrac{\dfrac{x\left(30-x\right)!}{2!\left(28-x!\right)}}{4060}=\dfrac{12}{29}\)
\(\Leftrightarrow\dfrac{x\left(29-x\right)\left(30-x\right)}{8120}=\dfrac{12}{29}\) \(\Leftrightarrow x^3-59x^2+870x-3360=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\simeq38,8\left(L\right)\\x\simeq6,2\left(L\right)\\x=14\left(N\right)\end{matrix}\right.\)
vậy có 14 học sinh nữ