Bài 3. Hình thang - Hình thang cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Một khung cửa sổ hình thang cân có chiều cao 3m, hai đáy là 3m và 1m (Hình 9). Tìm độ dài hai cạnh bên và hai đường chéo.

Hà Quang Minh
8 tháng 9 2023 lúc 21:40

Kẻ đường cao \(BK\)

Suy ra \(AH = BK\) và \(AHKB\) là hình chữ nhật

Suy ra \(HK = AB = 1\)cm

Vì \(ABCD\) là hình thang cân (gt)

\( \Rightarrow AC = BD\)  \(AD = BC\)  (tc)

Xét \(\Delta AHD\) và \(\Delta BKC\) ta có:

\(\widehat {{\rm{AHD}}} = \widehat {{\rm{BKC}}} = 90^\circ \) (gt)

\(\widehat D = \widehat C\) (định nghĩa hình thang cân)

\(AD = BC\) (tính chất hình thang cân)

Suy ra: \(\Delta AHD = \Delta BKC\) (ch – cgv)

Suy ra \(DH = KC\) (hai cạnh tương ứng)

Suy ra \(DH = KC = \frac{{CD - HK}}{2} = \frac{{3 - 1}}{2} = 1\) (cm)

Suy ra \(HC = 2\) (cm)

Áp dụng định lý Pythagore vào tam giác vuông \(AHD\) ta có:

\(A{D^2} = D{H^2} + A{H^2} = {1^2} + {3^2} = 10\)

Suy ra \(AD = \sqrt {10} \) (cm)

Áp dụng định lý Pythagore vào tam giác vuông \(ACH\) ta có:

\(A{C^2} = A{H^2} + H{C^2} = {3^2} + {2^2} = 9 + 4 = 13\)

\(AC = \sqrt {13} \) (cm)

Vậy \(AC = BD = \sqrt {13} \)cm; \(AD = BC = \sqrt {10} \) cm


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết