Ta có: \({u_1} = 3,\;q = 1- 0,2 = 0,8\).
Giá trị của máy ủi sau n năm là: \({u_n} = 3 \times {0,8^{n - 1}}\)
Vậy sau 5 năm sử dụng giá trị của máy ủi là: \({u_5} = 3 \times {0,8^{5 - 1}} = 1,2288\) (tỷ đồng)
Ta có: \({u_1} = 3,\;q = 1- 0,2 = 0,8\).
Giá trị của máy ủi sau n năm là: \({u_n} = 3 \times {0,8^{n - 1}}\)
Vậy sau 5 năm sử dụng giá trị của máy ủi là: \({u_5} = 3 \times {0,8^{5 - 1}} = 1,2288\) (tỷ đồng)
Một nhà máy tuyển thêm công nhân vào làm việc trong thời hạn ba năm và đưa ra hai phương án lựa chọn về lương như sau:
- Phương án 1: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 500 nghìn đồng.
- Phương án 2: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 5%.
Với phương án nào thì tổng lương nhận được sau ba năm làm việc của người công nhân sẽ lớn hơn?
Một loại thuốc được dùng mỗi ngày một lần. Lúc đầu nồng độ thuốc trong máu của bệnh nhân tăng nhanh, nhưng mỗi liều kế tiếp có tác dụng ít hơn liều trước đó. Lượng thuốc trong máu ở ngày thứ nhất là 50mg, và mỗi ngày sau đó giảm chỉ còn một nửa so với ngày kế trước đó. Tính tổng lượng thuốc (tính bằng mg) trong máu của bệnh nhân sau khi dùng thuốc 10 ngày liên tiếp.
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xem nó có phải là cấp số nhân không. Nếu nó là cấp số nhân, hãy tìm công bội q và viết công thức số hạng tổng quát của nó dưới dạng \({u_n} = {u_1}.{q^{n - 1}}\)
a) \({u_n} = 5n\)
b) \({u_n} = {5^n}\)
c) \({u_1} = 1,\;{u_n} = n.{u_{n - 1}}\),
d) \({u_1} = 1,\;{u_n} = 5.{u_{n - 1}}\)
Vào năm 2020, dân số của một quốc gia là khoảng 97 triệu người và tốc độ tăng trưởng dân số là 0,91%. Nếu tốc độ tăng trưởng dân số này được giữ nguyên hằng năm, hãy ước tính dân số của quốc gia đó vào năm 2030.
Cho dãy số \({u_n}\)với \({u_n} = {2.5^n}\). Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {3.2^n}\)
a) Viết năm số hạng đầu của dãy số này.
b) Dự đoán hệ thức truy hồi liên hệ giữa \({u_n}\) và \({u_{n - 1}}\).
Một cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5115?
Một cấp số nhân có số hạng thứ 6 bằng 96 và số hạng thứ 3 bằng 12. Tìm số hạng thứ 50 của cấp số nhân này.
Trong một lọ nuôi cấy vi khuẩn, ban đầu có 5 000 con vi khuẩn và số lượng vi khuẩn tăng lên thêm 8% mỗi giờ. Hỏi sau 5 giờ thì số lượng vi khuẩn là bao nhiêu?