\(\overrightarrow{F_D}+\overrightarrow{F_A}+\overrightarrow{F_B}=\overrightarrow{0}\Leftrightarrow F_D^2=F_A^2+F_B^2\)
\(\Leftrightarrow\left(\dfrac{G.m'.m\sqrt{2}}{AD^2}\right)^2=\left(\dfrac{G.m.m'}{AB^2}\right)^2+\left(\dfrac{G.m'.m}{AC^2}\right)^2\)
\(\Leftrightarrow\left(\dfrac{\sqrt{2}}{AD^2}\right)^2=\dfrac{1}{AB^4}+\dfrac{1}{AC^4}\Leftrightarrow\dfrac{2}{AD^2}=\dfrac{1}{a^4}+\dfrac{1}{a^4}=\dfrac{2}{a^4}\)
\(\Rightarrow AD=a^2\)
\(\overrightarrow{F_D}+\overrightarrow{F_A}+\overrightarrow{F_B}=\overrightarrow{0}\Leftrightarrow F_D^2=F_A^2+F_B^2\)
\(\Leftrightarrow\left(\dfrac{G.m'.m\sqrt{2}}{AD^2}\right)^2=\left(\dfrac{G.m.m'}{AB^2}\right)^2+\left(\dfrac{G.m'.m}{AC^2}\right)^2\)
\(\Leftrightarrow\left(\dfrac{\sqrt{2}}{AD^2}\right)^2=\dfrac{1}{AB^4}+\dfrac{1}{AC^4}\Leftrightarrow\dfrac{2}{AD^2}=\dfrac{1}{a^4}+\dfrac{1}{a^4}=\dfrac{2}{a^4}\)
\(\Rightarrow AD=a^2\)