a) Áp dụng định lí Pytago vào tam giác MNP vuông tại M có:
NP2 = MN2 + MP2
=> NP2 = 62 + 82
=> NP2 = 100
=> NP = 10 (cm)
*) Ta có: góc MNP + góc NMH = 90o (do tam giác MNH vuông tại H)
góc MNP + góc MPN = 90o (do tam giác MNP vuông tại M)
=> góc NHM = góc MPN
Xét tam giác HMN và tam giác HPM có:
góc MHN = góc PHM = 90o
góc NHM = góc MPN (cmt)
=> tam giác HMN \(_{\infty}\) tam giác HPM (g.g)
b) (câu b bạn ghi sai đề nha. Phải là c/m NE2 = NH.NP)
Ta có: NP = NE + PE
=> 10 = NE + 4
=> NE = 6 (cm)
=> NE = MN (=6cm)
Xét tam giác MNH và tam giác PNM có:
MHN = NMP = 90o
góc N chung
=> tam giác MNH đồng dạng với tam giác PNM (g.g)
=> \(\dfrac{MN}{PN}=\dfrac{NH}{MN}\)
=> MN2 = NH.NP
=> NE2 = NH.NP (do MN = NE (cmt))
c)Vì BD là đường phân giác của tam giác MNP nên:
\(\dfrac{DM}{MN}=\dfrac{DP}{NP}\)
=>\(\dfrac{DM}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{DM}{6}=\dfrac{DP}{10}=\dfrac{DM+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
=> DM = 1/2 . 6 = 3(cm)
Xét tam giác MND và tam giác END có:
MN = NE (cmt)
N1 = N2 ( do ND là tia p/g)
ND: cạnh chung
=>tam giác MND = tam giác END
=> MD = ED = 3(cm) (hai cạnh tương ứng)
=> NMD = NED = 90o (hai góc tương ứng)
SPED = 1/2.PE.ED = 1/2.4.3 = 6 (cm2)
WOW.......... Giống hệt đề thi học kì II của mình.