a: Ta có: AD=DE=EC
mà AD+DE+EC=3a
nên \(AD=DE=EC=a\)
mà AB=a
nên AB=AD=DE=EC=a và DC=2a
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=BA^2+AD^2\)
\(\Leftrightarrow BD^2=a^2+a^2=2a^2\)
hay \(BD=a\sqrt{2}\)
Ta có: \(\dfrac{DE}{DB}=\dfrac{a}{a\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
mà \(\dfrac{DB}{DC}=\dfrac{a\sqrt{2}}{2a}=\dfrac{\sqrt{2}}{2}\)
nên \(\dfrac{DE}{DB}=\dfrac{DB}{DC}\)
b: Xét ΔBDE và ΔCDB có
\(\dfrac{DE}{DB}=\dfrac{DB}{DC}\)
\(\widehat{BDC}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB