Cho tam giác ABC có 3 góc nhọn (AB,AC). Vẽ 3 đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh tam giác ADB đồng dạng với tam giác CFB và BF.BA=BD.BC
b)Chứng minh tam giác BFD đồng dạng tam giác BCA
c) Qua a vẽ dường thẳng xy song song với BC. Tia DF cắt dường thẳng xy tại M. Gọi I là giao điểm của MC và AD. Chứng minh EI song song với BC
( mình cần gấp lắm 10h30 trưa mai mình cần rồi mong mọi người giúp dỡ em em cảm ơn nhiều lắm) (À mà để đỡ tốn thời gian của mọi người nên chỉ giúp mình câu c thôi nha cảm ơn mọi người nhiều lắm)
Bài 3: Cho tam giác ABC vuông tại A (AC>AB), M là điểm trên cạnh AC. Vẽ MD vuông góc với BC tại D. Gọi E là giao điểm của hai đường thẳng MD và AB. a) Chứng minh: ∆CDM∾∆CAB. b) Chứng minh: MD.ME=MA.MC c) Chứng minh: 𝑀𝐴𝐷 ̂ = 𝑀𝐸𝐶 ̂ d) giả sử 𝑆𝐴𝐵𝐷𝑀 = 3𝑆𝐶𝐷𝑀, chứng minh: BC=2MC
Cho △ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh △AEB đồng dạng △AFC
b) Chứng minh góc ABC = góc ABC
c) Kéo dài EF và BC cắt nhau tại \(I\) . Gọi M là trung điểm của BC. Chứng minh \(IE.IF=IM^2-\dfrac{BC^2}{4}\)
Cho tam giác ABC nhọn ( AB < AC ) có hai đường cao BE, CF cắt nhau tại H.
Gọi D là giao điểm của AH và BC.
Chứng minh tam giác AEB đồng dạng tam giác AFC và AH. CD = HE. AC
Chứng minh DA là phân giác của góc EDF
GIÚP MIK VỚI :(((
Bài 14: Cho∆ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥AB và CK ⊥AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD. Gọi M là giao điểm của DF và BC Chứng minh rằng: MD/MF = AC/AB. Cho BC=8cm, BD=5cm, DE=3cm . Chứng minh tam giác ABC cân
Mik đang cần gấp!!!
Trl giúp t câu C với ạ
Cho ∆ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh ∆HBA ∾ ∆ABC
b) Chứng minh AH2=HB.HC
c) Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh: CM⊥BE tại K.
Trl giúp t câu C với ạ
Cho ∆ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh ∆HBA ∾ ∆ABC
b) Chứng minh AH2=HB.HC
c) Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh: CM⊥BE tại K.