\(M=\left(\dfrac{x}{y}+1-5\right)^3=\left(\dfrac{x}{y}-4\right)^3\)
\(=\left(\dfrac{12}{2}-4\right)^3=\left(6-4\right)^3=2^3=8\)
\(M=\left(\dfrac{x}{y}+1-5\right)^3=\left(\dfrac{x}{y}-4\right)^3\)
\(=\left(\dfrac{12}{2}-4\right)^3=\left(6-4\right)^3=2^3=8\)
cho x,y,z là các số thực dương và\(x\cdot y\cdot z=1\), tìm giá trị lớn nhất cúa P biết
\(P=\dfrac{1}{\left(x+2\right)^2+y^2+2xy}+\dfrac{1}{\left(y+2\right)^2+z^2+2yz}+\dfrac{1}{\left(z+2\right)^2+x^2+2xz}\)
Thực hiện phép tính :
a, \(\left(x^2+\dfrac{2}{5}y\right)\cdot\left(x^2-\dfrac{2}{5}y\right)\)
b,\(\left(3x-2y\right)\cdot\left(3x+2y\right)\cdot\left(9x^2+4y^2\right)\)
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3
55. Chứng minh đẳng thức: \(\dfrac{\left(x-y\right)^7-x^7+y^7}{\left(x-y\right)^5-x^5+y^5}=\dfrac{7}{5}\left(x^2-xy+y^2\right)\)
Tìm x :
a, \(\left(2x+1\right)^2-3x^2+4=\left(1-x\right).\left(1+x\right)\)
b, \(\left(4x-3\right)\cdot\left(4x+3\right)-2\cdot\left(x+2\right)^2=14x^2\)
c, \(\left(2x-1\right)\cdot\left(x+1\right)-x^2+1=\dfrac{1}{2}\cdot\left(x-1\right)^2\)
Chứng minh:
a) \(x\ne0,y\ne0\) và \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
b) \(x\ne0,y\ne0,z\ne0\) và \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Rút gọn M
M= \(\dfrac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
1) Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
CMR: \(a=b=c=1\)
2) CMR: nếu \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
3) Cho \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)