Bài 3: Phương trình quy về phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Lời giải cho phương trình \(\sqrt { - {x^2} + x + 1}  = x\) như sau đúng hai sai?

\(\)\(\sqrt { - {x^2} + x + 1}  = x\)               

\( \Rightarrow  - {x^2} + x + 1 = {x^2}\)  (bình phương cả hai vế để làm mất dấu căn)

\( \Rightarrow  - 2{x^2} + x + 1 = 0\)   (chuyển vế, rút gọn)

\( \Rightarrow x = 1\) hoặc \(x =  - \frac{1}{2}\) (giải phương trình bậc hai)

Vậy phương trình đã cho có hai nghiệm là 1 và \( - \frac{1}{2}\)

Hà Quang Minh
26 tháng 9 2023 lúc 23:22

Thay nghiệm tìm được vào phương trình ban đầu ta có:

+) Thay \(x = 1\) vào phương trình \(\sqrt { - {x^2} + x + 1}  = x\) ta thấy thảo mãn phương trình

+) Thay \(x =  - \frac{1}{2}\) vào \(\sqrt { - {x^2} + x + 1}  = x\) ta thấy không thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x = 1\), suy ra lời giải như trên là sai.


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le