\(3,Đk:x\ge0\\ PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\\ 7,ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x\left(x+1\right)}\right)+\left(\sqrt{x}-1\right)=0\\ \Leftrightarrow-\sqrt{x+1}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(4,ĐK:1\le x\le\sqrt{5}\\ PT\Leftrightarrow5-x^2=x^2-2x+1\\ \Leftrightarrow x=-2\left(ktm\right)\Leftrightarrow x\in\varnothing\)