ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
\(\Leftrightarrow2x-1-2\sqrt{\left(2x-1\right)\left(x+3\right)}-x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x-1}-2\sqrt{x+3}\right)-x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-x\right)\left(\sqrt{2x-1}-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}=x\left(x\ge0\right)\\\sqrt{2x-1}=2\sqrt{x+3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=x^2\\2x-1=4\left(x+3\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{13}{2}\left(loại\right)\end{matrix}\right.\)