Lời giải:
\(\lim \frac{4n^5+n^3-5n+3}{(2n^2-3)(2n+1)^3}=\lim \frac{4+\frac{1}{n^2}-\frac{5}{n^4}+\frac{3}{n^5}}{(2-\frac{3}{n^2})(2+\frac{1}{n})^3}=\frac{4}{2.2^3}=\frac{1}{4}\)
Lời giải:
\(\lim \frac{4n^5+n^3-5n+3}{(2n^2-3)(2n+1)^3}=\lim \frac{4+\frac{1}{n^2}-\frac{5}{n^4}+\frac{3}{n^5}}{(2-\frac{3}{n^2})(2+\frac{1}{n})^3}=\frac{4}{2.2^3}=\frac{1}{4}\)
\(lim\dfrac{4n^5+n^3-5n+3}{\left(2n^2-3\right)\left(2n+1\right)^3}\)
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
lim\(\left(5n-\sqrt{25n^2-3n+5}\right)\)
lim\(\dfrac{4n^5-3n^4-2n^3+7n-9}{-5n\left(3n^2-2n+1\right)\left(5-2n^2\right)}\)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
Tính :6/ lim\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
7/ lim \(\dfrac{\sqrt{n^3-2n+5}}{3+5n}\)
10/ lim\(\dfrac{1+3+5+...+\left(2n+1\right)}{3n^3+4}\)
lim\(\dfrac{\left(2-n\right)\left(3+2n^3\right)}{2n^2-1}\)
lim\(\dfrac{\left(\sqrt{4n^2+1}-2n\right)n}{\sqrt[3]{4-n^3}+n}\)
Tính giới hạn :
L = lim \(\dfrac{\left(n^2+2n\right)\left(2n^3+1\right)\left(4n+5\right)}{\left(n^4-3n-1\right)\left(3n^2-7\right)}\)
đặt \(a=lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\). tìm \(lim\dfrac{an^3-\left(a+2\right)n^2+1}{4an^3-n^2+3n+3}\)
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{2n^2+5}{-3n^2-3}\)
b) \(lim\left(-5n^3-2n^2+5n-6\right)\)