\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2-x+1}}{x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4-\dfrac{1}{x}+\dfrac{1}{x^2}}}{1+\dfrac{1}{x}}=\dfrac{\sqrt{4}}{1}=2\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2-x+1}}{x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4-\dfrac{1}{x}+\dfrac{1}{x^2}}}{1+\dfrac{1}{x}}=\dfrac{\sqrt{4}}{1}=2\)
a) lim ( \(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}\)
x-> +∞
b) lim \(\dfrac{\sqrt{4x+1}-3}{x^2-4}\)
x-> 2
c) lim \(\dfrac{\sqrt{2x+5}-1}{x^2-4}\)
x-> -2
a) lim \(\dfrac{x\sqrt{x^2+1}-2x+1}{^3\sqrt{2x^3-2}+1}\)
x-> -∞
b) lim \(\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
x-> -∞
c) lim \(\dfrac{\sqrt{4x^2+x}+^3\sqrt{8x^3+x-1}}{^4\sqrt{x^4+3}}\)
x-> +∞
cho biết \(\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{a\left|x\right|+2}=\dfrac{2}{3}\). tính giá trị a?
a) lim (2x+ \(\sqrt{4x^2-x+1}\))
x-> -∞
b) lim x\(\left(\sqrt{4x^2+1}-x\right)\)
x-> -∞
giới hạn \(\lim\limits_{x\rightarrow3}\dfrac{x+1-\sqrt{5x+1}}{x-\sqrt{4x-3}}=\dfrac{a}{b}\). tìm a,b biết a/b tối giản
cho \(\lim\limits_{x\rightarrow\dfrac{1}{2}}\dfrac{\sqrt{1+ax^2}-bx-2}{4x^3-3x+1}=c\) (a,b,c thuoc R). tìm a, b, c?
a) lim \(\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+2}}\)
x-> +∞
b) lim \(\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
x-> ∞
cho \(\lim\limits_{x\rightarrow-\infty}\dfrac{a\sqrt{x^2+1}+2017}{x+2018}=\dfrac{1}{2}\); \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+bx+1}-x\right)=2\). Tính P=4a+b
Tìm giơi han:
a) lim (x-> \(+\infty\)) \(\dfrac{\sqrt{x^2+1}+x}{5-2x}\)
b) lim (x->4) \(\left(\dfrac{\sqrt{15x+4}-\sqrt{x-3}-3}{-x+4}\right)\)
sorry, e k bt nhâp lim ..