\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{-ax+2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}+\sqrt{4-\dfrac{1}{x}+\dfrac{5}{x^2}}}{-a+\dfrac{2}{x}}=\dfrac{2}{-a}=\dfrac{2}{3}\)
\(\Rightarrow a=-3\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{-ax+2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}+\sqrt{4-\dfrac{1}{x}+\dfrac{5}{x^2}}}{-a+\dfrac{2}{x}}=\dfrac{2}{-a}=\dfrac{2}{3}\)
\(\Rightarrow a=-3\)
cho \(\lim\limits_{x\rightarrow-\infty}\dfrac{a\sqrt{x^2+1}+2017}{x+2018}=\dfrac{1}{2}\); \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+bx+1}-x\right)=2\). Tính P=4a+b
giới hạn \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-1\right)^2\left(2x^3+3x\right)}{4x-x^5}=\dfrac{a}{b}\). tìm a,b biết a/b tối giản
biết \(\lim\limits_{x\rightarrow+\infty}\left(x+1\right)\sqrt{\dfrac{2x+1}{5x^3+x+2}}=-\sqrt{\dfrac{a}{b}}\) . tìm a, b biết a, b là phan so toi gian; a,b>0
biết \(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x^2+1}{x-2}+ax-b\right)=-5\). tìm a, b?
biết \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{49x^2+x}-\sqrt{16x^2+x}-\sqrt{9x^2+x}\right)=\dfrac{a}{b}\). tìm a,b biết a/b tối giản
tính giá trị \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-3x+6}+2x}{2x-3}\) ?
biết \(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x^3+1}{x^2-2}+ax+b\right)=10\). tìm a,b?
tính \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+x}+\sqrt[3]{x^3+1}}{x}=\sqrt[a]{b}+c\). thì a+b+c=?