(x+1)^2=4(x^2-2x+1)
<=> x^2+2x+1=4x^2-8x+4
<=> 2x+1=3x^2-8x+4
<=> 3x^2-10x+4=1
<=> 3x^2-10x+3=0
<=> x^2-10/3x+1=0
<=> x^2-10/3x+25/9=16/9
<=> (x-5/3)^2=16/9
<=> x-5/3=4/3 hoặc: x-5/3=(-4)/3
<=> x=1/3 hoặc: x=3
Vậy: x thuộc 1/3;3
(x+1)^2=4(x^2-2x+1)
<=> x^2+2x+1=4x^2-8x+4
<=> 2x+1=3x^2-8x+4
<=> 3x^2-10x+4=1
<=> 3x^2-10x+3=0
<=> x^2-10/3x+1=0
<=> x^2-10/3x+25/9=16/9
<=> (x-5/3)^2=16/9
<=> x-5/3=4/3 hoặc: x-5/3=(-4)/3
<=> x=1/3 hoặc: x=3
Vậy: x thuộc 1/3;3
Bài 1 : dùng hẳng đẳng thức để khai triển và thu gọn
a) \(\left(2x^2+\frac{1}{3}\right)^3\)
b) \(\left(2x^2y-3xy\right)^3\)
c) \(\left(-3xy^4+\frac{1}{2}x^2y^2\right)^3\)
d) \(\left(-\frac{1}{3}ab^2-2a^3b\right)^3\)
e) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
f) \(x.\left(x-1\right).\left(x+1\right)-\left(x+1\right).\left(x^2-x+1\right)\)
g) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x-4\right).\left(x+4\right)\)
h) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
k) \(\left(x^4-3x^2+9\right).\left(x^2+3\right)+\left(3-x^2\right)^3-9x^2.\left(x^2-3\right)\)
l) \(\left(4x+6y\right).\left(4x^2-6xy+9y^2\right)-54y^3\)
cm các biểu thức sau ko phụ thuộc vào biến:
a,\(\left[\frac{2\left(x+1\right)\left(y+1\right)}{\left(x+1\right)^2-\left(y+1\right)^2}+\frac{x-y}{2x+2y+4}\right].\frac{2x+2}{x+y+2}+\frac{y+1}{y-x}\)
b,\(\left[2\left(x+y\right)+1-\frac{1}{1-2x-2y}\right]:\left[2x+2y-\frac{4x^2+8xy+4y^2}{2x+2y-1}\right]+2\left(x+y\right)\)
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
Giải các phương tình sau:
a) \(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
b)\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
c)\(2x\left(8x-1\right)^2\left(4x-1\right)=0\)
d)\(x^2-y^2+2x-4y-10=0\) ( x,y là các số nguyên dương )
Giải phương trình
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
giải pt sau
a)\(\left(x-2\right)\left(x-3\right)+2x=\left(x-2\right)^2-2\)
b) \(\left(x-1\right)^2+3x\left(x-1\right)+7=\left(2x-1\right)^2+5\left(x-3\right)\)
c)\(5\left(x^1-2x-1\right)+2\left(3x-2\right)=5\left(x+1\right)^2\)
d)\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
thực hiện phép tính:
a,\(\left(x+2\right)^9:\left(x+2\right)^6\)
b,\(\left(x-y\right)^4:\left(x-2\right)^3\)
c,\(\left(x^2+2x+4\right)^5:\left(x^2+2x+4\right)\)
d,\(2\left(x^2+1\right)^3:\dfrac{1}{3}\left(x^2+1\right)\)
Giải các phương trình sau:
a) \(x^2+\dfrac{2x}{x-1}=8\)
b) \(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)
c) \(\dfrac{x+4}{x-1}+\dfrac{x-4}{x+1}=\dfrac{x+8}{x-2}+\dfrac{x-8}{x+2}+6\)
d) \(\left(x^2+6x+8\right)\left(x^2+8x+15\right)=24\)
e) \(\left(x^2+x-2\right)\left(x^2+9x+18\right)=28\)
f) \(3\left(-x^2+2x+3\right)^4-26x^2\left(-x^2+2x+3\right)^2-9x^4=0\)
g) \(x^4+6x^3+11x^2+6x+1=0\)
h) \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2=0\)
i) \(\left(x+2\right)^4+\left(x+8\right)^4=272\)
\(\frac{x+4}{\left(x-2\right)\left(x-1\right)}-\frac{x+1}{\left(x-3\right)\left(x-1\right)}=\frac{2x+5}{x\left(x-4\right)}\)
Giải các phương trình :
\(a,\left(x^2-2x+1\right)-4=0\)
\(b,\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(c,9\left(x-3\right)^2=4\left(x+2\right)^2\)