Lời giải:
Đặt \(\sqrt{\sqrt{20}+\sqrt{19}}=a\)
Ta thấy:
\(\sqrt{\sqrt{20}+\sqrt{19}}.\sqrt{\sqrt{20}-\sqrt{19}}=\sqrt{(\sqrt{20}-\sqrt{19})(\sqrt{20}+\sqrt{19})}=\sqrt{20-19}=1\)
\(\Rightarrow \sqrt{\sqrt{20}-\sqrt{19}}=\frac{1}{\sqrt{\sqrt{20}+\sqrt{19}}}=\frac{1}{a}\)
PT trở thành:
\(a^x+\frac{1}{a^x}=2\)
\(\Leftrightarrow a^{2x}+1-2a^{x}=0\)
\(\Leftrightarrow (a^x-1)^2=0\Rightarrow a^x=1\)
Mà \(a\neq 1\) nên \(\Rightarrow x=0\)