\(\left(\dfrac{1}{3}\sqrt{\dfrac{1}{2}}-\dfrac{2}{3}\sqrt{\dfrac{3}{2}}+\dfrac{2}{7}\sqrt{\dfrac{1}{6}}\right):\left(\dfrac{2}{7}\sqrt{\dfrac{1}{8}}\right)\\ =\left(\dfrac{\sqrt{2}}{6}-\dfrac{\sqrt{6}}{3}+\dfrac{\sqrt{6}}{21}\right):\dfrac{\sqrt{2}}{14}\\ =\left(\dfrac{7\sqrt{2}-14\sqrt{6}+2\sqrt{6}}{42}\right)\cdot7\sqrt{2}\\ =\dfrac{7\sqrt{2}\left(7\sqrt{2}-12\sqrt{6}\right)}{42}\\ =\dfrac{98-168\sqrt{3}}{42}=\dfrac{7-12\sqrt{3}}{3}\)