\(\left\{{}\begin{matrix}x^3+6x^2y=7\\8y^3+12xy^2=20\end{matrix}\right.\) \(\Leftrightarrow\left(x+2y\right)^3=27\Rightarrow x+2y=3\Rightarrow x=3-2y\)
Thay vào pt sau:
\(2y^3+3\left(3-2y\right)y^2-5=0\)
\(\Leftrightarrow4y^3-9y^2+5=0\)
\(\Leftrightarrow\left(y-1\right)\left(4y^2-5y-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=1\\y=\frac{5+\sqrt{105}}{8}\Rightarrow x=\frac{7-\sqrt{105}}{4}\\y=\frac{5-\sqrt{105}}{8}\Rightarrow x=\frac{7+\sqrt{105}}{4}\end{matrix}\right.\)