Lời giải:
Lấy PT$(1)*\sqrt{2}$ cộng PT$(2)*\sqrt{3}$ ta thu được:
$4y-\sqrt{6}x+9y+\sqrt{6}x=-13\sqrt{2}$
$\Leftrightarrow 13y=-13\sqrt{2}\Rightarrow y=-\sqrt{2}$
$x=\frac{2\sqrt{2}y+7}{\sqrt{3}}=\sqrt{3}$
Vậy........
Lời giải:
Lấy PT$(1)*\sqrt{2}$ cộng PT$(2)*\sqrt{3}$ ta thu được:
$4y-\sqrt{6}x+9y+\sqrt{6}x=-13\sqrt{2}$
$\Leftrightarrow 13y=-13\sqrt{2}\Rightarrow y=-\sqrt{2}$
$x=\frac{2\sqrt{2}y+7}{\sqrt{3}}=\sqrt{3}$
Vậy........
a)\(\left\{{}\begin{matrix}2x+\left|y\right|=3\\x-y=6\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{3}x+y=\sqrt{2}\\\sqrt{3}x-\sqrt{2}y=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\sqrt{x+3}+\sqrt{y^2-4y+4}=2\\\sqrt{x+3}-3\left|2-y\right|=1\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{5}\\\sqrt{2}x+y=1-\sqrt{10}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
Giải hệ phương trình
a. \(\left\{{}\begin{matrix}\left(2-\sqrt{3}\right)x-3y=2+5+\sqrt{3}\\4x+y=4-2\sqrt{x}\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x\sqrt{2}-y\sqrt{3}=1\\x+y\sqrt{3}=2\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+xy+y=2+3\sqrt[]{2}\\x^2+y^2=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{y^2-7x-6}-\sqrt[3]{y\left(x-6\right)}=1\\\sqrt{2\left(x-y\right)^2+6x-2y+4}-\sqrt{y}=\sqrt{x+1}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(\sqrt{5}+2\right)x+y=3-\sqrt{5}\\2y-x=6-2\sqrt{5}\end{matrix}\right.\)
giải các hệ phương trình
a)\(\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y-2=0\\5x-y=11\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\sqrt{3x}-\sqrt{5y}=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{5}x-4y=15-2\sqrt{7}\\-2\sqrt{5}x+8\sqrt{7}y=18\end{matrix}\right.\)