Giair phương trình sau:
a,\(2x^3+5x^2-3x=0\) b,\(2x^3+6x^2=x^2+3x\)
c,\(x^2+\left(x+2\right)\left(11x-7\right)=4\) d,\(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
e, \(x^3+1=x\left(x+1\right)\) f,\(x^3+x^2+x+1=0\)
g,\(x^3-3x^2+3x-1=0\) h,\(x^3-7x+6=0\)
i,\(x^6-x^2=0\) j,\(x^3-12=13x\)
k,\(-x^5+4x^4=-12x^3\) l, \(x^3=4x\)
giải phương trình, tiếp
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\)
\(\frac{1}{9}\left(x-3\right)^2-\frac{1}{25}\left(x+5\right)^2=0\)
\(2x^2-6x+1=0\)
\(3x^2+12x-66=0\)
\(9x^2-30x+225=0\)
\(3x^2-7x+1=0\)
\(3x^2-7x+8=0\)
\(x^2-4x+1=0\)
\(2x^2-6x+1=0\)
1) Giải bài toán bằng cách lập ptrình: ( Nếu các đại lượng có sự biến đổi thì lập bảng 12 ô )
Một miếng đất hcn có chiều dài hơn chiều rộng 6m. Tính kích thước của miếng đất, biết chu vi của nó là 60m.
2) Giải các pt chứa ẩn ở mẫu ( Hãy tìm điều kiện cho ẩn để mẫu thức khác 0)
a) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
b) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
c) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x+3\right)\left(x-3\right)}\)
e) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
f) \(\frac{x}{3x-2}-\frac{4}{4x-3}=\frac{x^2}{\left(3x-2\right)\left(4x-3\right)}\)
g) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
h) \(\frac{2x-1}{x-3}-\frac{1}{x}=\frac{3}{x^2-3x}\)
i) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\)
rút gọn biểu thức
\(A_8=\left(1-\frac{1}{x+2}\right):\left(\frac{4-x^2}{x-6}-\frac{x-2}{3-x}-\frac{x-3}{x+2}\right)\)
\(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2x^2y}{x^4-2x^2y^2+y^4}+\frac{x^2}{\left(y^2-x^2\right)\left(x+y\right)}\right]\)
Giải các phương trình sau:
a) \(\frac{4}{x-1}-\frac{5}{x-2}=-3\)
b) \(3x-\frac{1}{x-2}=\frac{x-1}{2-x}\)
c) \(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
d) \(\frac{2}{x^2-4}-\frac{1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
e) \(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\)
f) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
g)\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
h) \(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(9x^2-1\right)}\)
i) \(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
j) \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+2\right)\)
k) \(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
Giải các phương trình sau :
Câu a : \(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right)x^2\)
Câu b : \(\dfrac{-7x^2+4}{x^3+1}=\dfrac{5}{x^2-x+1}-\dfrac{1}{x+1}\)
Câu c : \(2x^2-x=3-6x\)
Câu d : \(\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
106. Giải phương trình: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
giải phương trình
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)^{ }\)
\(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{8x^23}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
a)\(x^4+\left(x-1\right)\left(3^{x^2}+2x-2\right)=0\)
b)\(\dfrac{x^2-3x+5}{x^2-4x+5}-\dfrac{x^2-5x+5}{x^2-6x+5}=\dfrac{-1}{4}\)