Ta có: \(\left|2x-1\right|-x=4\)
\(\Rightarrow\left|2x-1\right|=4+x\)
+) TH1: \(2x-1\ge0\Rightarrow2x\ge1\Rightarrow x\ge\dfrac{1}{2}\)
Ta có: \(2x-1=4+x\)
\(\Rightarrow2x-x=1+4\)
\(\Rightarrow x=5\) (t/m)
+) TH2: \(2x-1< 0\Rightarrow2x< 1\Rightarrow x< \dfrac{1}{2}\)
Khi đó \(-2x+1=4+x\)
\(\Rightarrow-2x-x=-1+4\)
\(\Rightarrow-3x=3\)
\(\Rightarrow x=-1\) (t/m)
Vậy \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\).