Lập phương trình tham số của đường thẳng d đi qua điểm \(M_0\left(x_0;y_0;z_0\right)\) và vuông góc với mặt phẳng \(\left(P\right):Ax+By+Cz+D=0\) ?
Lập phương trình tham số của đường thẳng d đi qua điểm \(M_0\left(x_0;y_0;z_0\right)\) và song song với hai mặt phẳng cắt nhau :
\(\left(P\right):Ax+By+Cz+D=0\)
\(\left(Q\right):A'x+B'y+C'z+D=0\)
Trong không gian Oxyz, cho mặt cầu \(\left(S\right):\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\) ∈ (S) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng
A. 2
B. -1
C. -2
D. 1
Cho hình hộp chữ nhật OAIB.CEDF có tọa độ các đỉnh là \(A\left(3;0;0\right),B\left(0;4;0\right),C\left(0;0;5\right),O\left(0;0;0\right)\)
a) Xác định tọa độ đỉnh D. Viết phương trình tổng quát của mặt phẳng (ABD)
b) Viết phương trình tham số của đường thẳng đi qua D và vuông góc với mặt phẳng (ABD)
c) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD
d) Tính khoảng cách giữa hai đường thẳng AC và EF
Trong không gian Oxyz, cho 4 điểm \(A\left(2;4;-1\right),B\left(1;4;-1\right),C\left(1;4;3\right),D\left(2;2;-1\right)\)
a) Chứng minh rằng các đường thẳng AB, AC, AD vuông góc với nhau từng đôi một
b) Viết phương trình tham số của đường vuông góc chung \(\Delta\) của hai đường thẳng AB và CD
c) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D
d) Viết phương trình mặt phẳng \(\left(\alpha\right)\) tiếp xúc với mặt cầu (S) và song song với mặt phẳng (ABD)
Trong hệ tọa độ Oxyz, lập phương trình tham số của đường thẳng :
a) Đi qua hai điểm \(A\left(1;0;-3\right);B\left(3;-1;0\right)\)
b) Đi qua điểm \(M\left(2;3;-5\right)\) và song song với đường thẳng \(\Delta\) có phương trình :
\(\left\{{}\begin{matrix}x=-2+2t\\y=3-4t\\z=-5t\end{matrix}\right.\)
Trong không gian Oxyz, cho điểm \(D\left(-3;1;2\right)\) và mặt phẳng \(\left(\alpha\right)\) đi qua ba điểm \(A\left(1;0;11\right),B\left(0;1;10\right),C\left(1;1;8\right)\)
a) Viết phương trình đường thẳng AC
b) Viết phương trình tổng quát của mặt phẳng \(\left(\alpha\right)\)
c) Viết phương trình mặt cầu (S) tâm D, bán kính r = 5. Chứng minh mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu (S)
Lập phương trình mặt phẳng (P) đi qua điểm \(M\left(1;-3;2\right)\) và vuông góc với đường thẳng \(d:\dfrac{x-3}{2}=\dfrac{y+1}{-1}=\dfrac{z}{3}\)
Lập phương trình mặt phẳng (P) đi qua điểm \(I\left(-1;-1;1\right)\) và chứa đường thẳng \(d:\dfrac{x+2}{-1}=\dfrac{y-1}{4}=\dfrac{z-1}{-1}\)