\(\sqrt{4x-5}=1-2x\)
Điều kiện: \(4x-5\) ≥ \(0\) ⇔ \(x\) ≥ \(\dfrac{5}{4}\)
PT ⇔ \(4x-5=\left(1-2x\right)^2\)
⇔ \(4x-5=1-4x+4x^2\)
⇔ \(4x^2-8x+6=0\)
⇔ Phương trình vô nghiệm
\(\left|5x^2-11\right|=x-5\)
TH1: \(5x^2-11=x-5\)
⇔ \(5x^2-x-6=0\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-1\end{matrix}\right.\) (Loại)
TH2: \(5x^2-11=-x+5\)
⇔ \(5x^2+x-16=0\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{321}}{10}\\x=\dfrac{-1-\sqrt{321}}{10}\end{matrix}\right.\)(Thỏa mãn)
Vậy \(x=\dfrac{-1+\sqrt{321}}{10}\) và \(x=\dfrac{-1-\sqrt{321}}{10}\) là 2 nghiệm của phương trình.
\(x^4-3x^2-28=0\)
Đặt: \(t=x^2\) (\(t\) ≥ \(0\))
Ta được: \(t^2-3t-28=0\)
⇔ \(\left[{}\begin{matrix}t=7\\t=-4\end{matrix}\right.\)
Với \(t=7\) ⇒ \(x^2=7\)
⇔ \(\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)
Vậy \(x=\sqrt{7}\) và \(x=-\sqrt{7}\) là nghiệm của phương trình.