ĐKXĐ: \(-1\le x\le\dfrac{5}{2}\)
\(\Leftrightarrow\sqrt{3x+3}-3+1-\sqrt{5-2x}=x^3-3x^2-10x+24\)
\(\Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x+3}+3}+\dfrac{2\left(x-2\right)}{1+\sqrt{5-2x}}=\left(x-2\right)\left(x-4\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{3x+3}+3}+\dfrac{2}{1+\sqrt{5-2x}}=\left(x-4\right)\left(x+3\right)\left(1\right)\end{matrix}\right.\)
Xét (1), ta có:
\(\dfrac{3}{\sqrt{3x+3}+3}+\dfrac{2}{1+\sqrt{5-2x}}>0\)
\(-1\le x\le\dfrac{5}{2}\Rightarrow\left\{{}\begin{matrix}x+3>0\\x-4< 0\end{matrix}\right.\) \(\Rightarrow\left(x+3\right)\left(x-4\right)< 0\)
\(\Rightarrow\left(1\right)\) vô nghiệm hay pt có nghiệm duy nhất \(x=2\)