Kỳ thi có 10 HS, xếp ngồi 2 dãy ghế trên và dưới, mỗi dãy có 5 ghế. Thầy giáo có 2 loại đề, gồm 5 đề chẵn và 5 đề lẻ. Tính xs để mỗi hs đều nhận được 1 đề và 2 bạn ngồi kề trên, dưới là khác đề
Cho 5 đoạn thẳng có độ dài: 1cm, 3cm, 5cm, 7cm, 9cm. Lấy ngẫu nhiên 3 trong 5 đt đó. Xs để 3 đt lấy ra là 3 cạnh của 1 tam giác là
Số phần tử của không gian mẫu là n(Ω) = 10!.
Gọi A là biến cố mỗi học sinh đều nhận 1 đề và 2 bạn ngồi kề trên, dưới là khác loại đề.
Ta có:
Xếp 5 đề lẻ vào cùng 1 dãy ghế có 5! cách.
Xếp 5 đề chẵn vào cùng 1 dãy ghế có 5! cách.
Ở các cặp đề trên, dưới có thể đổi đề cho nhau nên có 2^5 cách.
=> n(A) = 5!.5!.2^5
Vậy P(A)=...
Lấy ngẫu nhiên 3 trong 5 đt là: 5C3 = 10 => n(Ω) = 10.Gọi A là biến cố 'chọn 3 đt có thể tạo được 1 tam giác.'Mà đk để tạo 1 tam giác là tổng 2 đoạn luôn lớn hơn đoạn còn lại.Do đó 5 đt thuộc {1,3,5,7,9} có bộ 3 thỏa mãn : {3,5,7} ; {3,7,9} ; {5,7,9}.=> n(A) = 3Vậy P(A) = 3/10