Ta có : \(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ac}\)
\(=\frac{c}{1+c+ac}+\frac{ac}{1+c+ac}+\frac{1}{1+c+ac}=\frac{1+c+ac}{1+c+ac}=1\)
Ta có : \(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ac}\)
\(=\frac{c}{1+c+ac}+\frac{ac}{1+c+ac}+\frac{1}{1+c+ac}=\frac{1+c+ac}{1+c+ac}=1\)
Cho số a , b , c , biết abc . c = 1 . Cm : \(\frac{1}{ab+a+1}+\frac{1}{bc+c+1}+\frac{1}{ca+c+1}=1\)
Cho các số a,b,c thỏa mãn a.b.c=1
Tính A\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
chứng minh rằng :
a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\) ( n , a ϵ N* )
b) áp dụng câu a tính ;
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
b)\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
Cho tam giác ABC ; M ; N ; P lần lượt là các điểm trên cạnh AB , AC , BC sao cho AM = \(\frac{1}{3}\) AB ; BP = \(\frac{1}{3}\) BC ; CN = \(\frac{1}{3}\) AC . Nối M với C , A với P và B với N chúng cắt nhau lần lượt tại D ; G ; E . So sánh diện tích AMD + diện tích BGP + diện tích CEN và diện tích DGE .
Nhanh lên nhé , mình cần gấp .
viết tất cả các phân số dương thành dãy:\(\frac{1}{1};\frac{2}{1};\frac{1}{2};\frac{3}{1};\frac{2}{2};\frac{1}{3};\frac{4}{1;};\frac{3}{2};\frac{2}{3};\frac{1}{4};...\)
a)hãy nêu quy luật viết của dãy và viết tiếp năm phân số nũa theo quy luật ấy
b)phân số\(\frac{50}{31}\) là số hạng thứ mấy của dãy.
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
Cho các số a,b,c thỏa mã a.b.c = 1
Tính A = \(\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)
tính số hạng 100 của dãy sau:
\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)