\(\ln\left(450\right)=\ln\left(2.3^2.5^2\right)=\ln\left(2\right)+2\ln\left(3\right)+2\ln\left(5\right)\)
\(\Rightarrow a+b+c=5\)
\(\ln\left(450\right)=\ln\left(2.3^2.5^2\right)=\ln\left(2\right)+2\ln\left(3\right)+2\ln\left(5\right)\)
\(\Rightarrow a+b+c=5\)
Bến xe buýt B nằm trên một đoạn đường thẳng giữa hai bến A và C. Sau khi rời khỏi bến A một khoảng thời gian t, xe buýt đến một điểm X trên đường mà khoảng cách từ điểm đó đến một trong ba bến bằng tổng khoảng cách từ đó đến hai bến còn lại. Sau đúng một khoảng thời gian t như vậy nữa, xe buýt lại đến một điểm thứ hai Y cũng có tính chất như trên và từ Y sau 25 phút nữa xe buýt đến B.
Hỏi xe buýt cần bao nhiêu thời gian để đi từ A đến C nếu nó đi với vận tốc không đổi và ở bến B nó dừng lại 5 phút?
giải hộ mình với
khi viết 6^2016 trong hệ thập phân có các chữ số là n, khi đó n có giá trị bằng
Cho 2 số thực a,b thay đổi, a>1/3, b>1. Khi biểu thức P=log3ab+logb(a⁴-9a²+81) đạt giá trị nhỏ nhất thì a+b bằng:
Câu 29/Đề 3: Biết phương trình (5+\(\sqrt{24}\))x^2-2x-2=49-10\(\sqrt{24}\) có hai nghiệm x1,x2 (x1<x2). Khi đó giá trị của x1-x2 bằng
Cho 3 số a,b,c thuộc [-1;1] và không đồng thời bằng 0
Chứng minh rằng: \(\dfrac{a^4b^2+b^4c^2+c^4a^2+3}{a^{2012}+b^{2012}+c^{2012}}\ge2\)
Chứng minh rằng : \(\log_an.\log_bn+\log_bn.\log_cn+\log_cn\log_an=\frac{\log_an.\log_bn.\log_cn}{\log_{abc}n}\) trong đó a, b, c, d là các số dương và \(a,b,c,abc\ne1\)
Xét các số thực a, b thỏa mãn \(\dfrac{1}{4}< b< a< 1\). Biểu thức \(P=\log_a\left(b-\dfrac{1}{4}\right)-\log_{\dfrac{a}{b}}\sqrt{b}\) đạt giá trị nhỏ nhất khi ?
Bài 1:
a)
ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\)
\(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\)
vậy \(A=\dfrac{1}{2}\)
b)
\(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\ B=\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{2}{29}-\dfrac{2}{29}+\dfrac{3}{39}-...-\dfrac{199}{1999}+\dfrac{200}{2009}\\ B=\dfrac{200}{2009}\)
Bài 2:
\(\dfrac{a}{b}=\dfrac{b}{3c}=\dfrac{c}{9a}=\dfrac{b+c}{3c+9a}\)
suy ra: \(b=\dfrac{3c\left(b+c\right)}{3c+9a}=\dfrac{3cb+3c^2}{3c+9a}=\dfrac{bc+c^2}{c+3a}\)
\(c=\dfrac{9a\left(b+c\right)}{3c+9a}=\dfrac{9ab+9ac}{3c+9a}=\dfrac{3ab+3ac}{c+3a}\)
giả sử b=c là đúng thì :\(\dfrac{bc+c^2}{c+3a}=\dfrac{3ab+3ac}{c+3a}\)
hay \(bc+c^2=3ab+3ac\\ \Leftrightarrow c^2+bc-3ab-3ac=0\)
\(\Leftrightarrow\left(b+c\right)\left(c-3a\right)=0\Rightarrow c-3a=0\Rightarrow c=3a\)
b) \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2016}\right)=\dfrac{2015}{4032}< 1\)
mà \(1< \dfrac{4}{3}\) nên \(\dfrac{2015}{4032}< \dfrac{4}{3}\)
hay \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}< \dfrac{4}{3}\)
bài 3:
a)\(\left(x-y\right)\left(x+y\right)=x^2-y^2-xy+xy=x^2-y^2\) (đpcm)
b) áp dụng BĐT tam giác, ta có:
\(a+b>c\Rightarrow a+b-c>0\\ b+c>a\Rightarrow b+c-a< 0\\ a+c>b\Rightarrow a-b+c>0\)
suy ra: \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< 0\: \: \: \: \: \: \)
đồng thời \(abc>0\) với mọi a, b, c dương.
nên \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< abc\)
ko tìm dc dấu bằng xảy ra.
Tìm m để đường thẳng y= mx+2m+1 cắt đồ thị hàm số y= \(\dfrac{2x+1}{x+1}\) tại 2 điểm A, B sao cho khoảng cách từ A ,B đến Ox bằng nhau.
mn giúp mk nha. ![]()