\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left|2x_1-4\right|+x_1-\left|2x_2-4\right|-x_2}{x_1-x_2}\)
\(=\dfrac{2\left|x_1-2\right|-2\left|x_2-2\right|+x_1-x_2}{x_1-x_2}\)
Khi x1<2; x2<2 thì x1-2<0; x2-2<0
=>\(A=\dfrac{2\left(2-x_1\right)-2\left(2-x_2\right)+x_1-x_2}{x_1-x_2}\)
\(=\dfrac{4-2x_1-4+2x_2+x_1-x_2}{x_1-x_2}=-1< 0\)
=>Hàm số đồng biến
Khi x1>2; x2>2 thì \(A=\dfrac{2\left(x_1-2\right)-2\left(x_2-2\right)+x_1-x_2}{x_1-x_2}\)
\(=\dfrac{2x_1-4-2x_2+4+x_1-x_2}{x_1-x_2}=1>0\)
=>Hàm số đồng biến