Khảo sát một trường trung học phổ thông, người ta thấy có 20% học sinh thuận tay trái và 35% học sinh bị cận thị. Giả sử đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không. Gặp ngẫu nhiên một học sinh của trường. Tính xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái.
Gọi \(A\) là biến cố “Học sinh thuận tay trái”, \(B\) là biến cố “Học sinh bị cận thị”.
Vậy \(A \cup B\) là biến cố “Học sinh bị cận thị hoặc thuận tay trái”
Ta có: \(P\left( A \right) = 0,2;P\left( B \right) = 0,35\).
Vì đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không nên \(A\) và \(B\) độc lập với nhau. Do đó \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,2.0,35 = 0,07\).
Vậy xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái là:
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,2 + 0,35 - 0,07 = 0,48\).