Bài 2. Biến cố hợp và quy tắc cộng xác suất

Giải mục 1 trang 94, 95 (SGK Chân trời sáng tạo)

Hướng dẫn giải

Mô tả các biến cố như sau:

`A = {2, 4}` (Thẻ lấy ra lần thứ nhất ghi số chẵn)
`B = {2, 4}` (Thẻ lấy ra lần thứ hai ghi số chẵn)
`C = {2, 4}` (Tích các số ghi trên hai thẻ lấy ra là số chẵn)

$HaNa$

(Trả lời bởi HaNa)
Thảo luận (1)

Giải mục 1 trang 94, 95 (SGK Chân trời sáng tạo)

Hướng dẫn giải

tham khảo

a) Số kết quả thuận lợi cho biến cố A là \(C^3_{17}=680\)

Số kết quả thuận lợi cho biến cố B là \(C^2_{17}.C^1_{15}=2040\)

b)\(A\cup B\)  là biến cố "Có ít nhất 2 học sinh nữ trong 3 học sinh được chọn"Số kết quả thuận lợi cho biến cố \(A\cup B\) là:\(680+2040=2720\) (Trả lời bởi Mai Trung Hải Phong)
Thảo luận (1)

Giải mục 2 trang 95, 96, 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

Số kết quả thuận lợi cho biến cố \(A \cup B\) là \(5 + 12 = 17\).

\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{n\left( \Omega \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega\right)}} = \frac{{12}}{{n\left( \Omega\right)}};P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega\right)}} = \frac{{17}}{{n\left( \Omega\right)}}\)

\( \Rightarrow P\left( A \right) + P\left( B \right) = P\left( {A \cup B} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 2 trang 95, 96, 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

THAM KHẢO:

A = {(2;1);(2;2);(2;3);(2;4);(2;5);(4;1);(4;2);(4;3);(4;4);(4;5)}

B = {(1;2);(2;2);(3;2);(4;2);(5;2);(1;4);(2;4);(3;4);(4;4);(5;4)}

C = {(1;2);(1;4);(2;1);(2;2);(2;3);(2;4);(2;5);(3;2);(3;4);(4;1);(4;2);(4;3);(4;4);(4;5); (5;2);(5;4)}

(Trả lời bởi Bùi Nguyên Khải)
Thảo luận (1)

Giải mục 2 trang 95, 96, 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

Gọi \(A\) là biến cố “Hạt giống thứ nhất nảy mầm”, \(B\) là biến cố “Hạt giống thứ hai nảy mầm”.

\(P\left( A \right) = P\left( B \right) = 0,8 \Rightarrow P\left( {\bar A} \right) = P\left( {\bar B} \right) = 1 - 0,8 = 0,2\)

Xác suất để có đúng 1 trong 2 hạt giống đó nảy mầm là:

\(P\left( {A\bar B} \right) + P\left( {\bar AB} \right) = P\left( A \right).P\left( {\bar B} \right) + P\left( {\bar A} \right).P\left( B \right) = 0,8.0,2 + 0,2.0,8 = 0,32\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 2 trang 95, 96, 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

Vì A và B là hai biến cố độc lập, nên `P(A∩B) = P(A) * P(B)`

Ta có:

`P(A∪B) = P(A) + P(B) - P(A) * P(B)`
`= 0,9 + 0,6 - 0,9 * 0,6`
`= 0,9 + 0,6 - 0,54`
`= 0,96`

Vậy xác suất của biến cố `A∪B` là 0,96.

$HaNa$

 

(Trả lời bởi HaNa)
Thảo luận (1)

Giải mục 2 trang 95, 96, 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

Gọi \(A\) là biến cố “Học sinh thuận tay trái”, \(B\) là biến cố “Học sinh bị cận thị”.

Vậy \(A \cup B\) là biến cố “Học sinh bị cận thị hoặc thuận tay trái”

Ta có: \(P\left( A \right) = 0,2;P\left( B \right) = 0,35\).

Vì đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không nên \(A\) và \(B\) độc lập với nhau. Do đó \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,2.0,35 = 0,07\).

Vậy xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái là:

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,2 + 0,35 - 0,07 = 0,48\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 trang 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 13 quả bóng có \({C}_{13}^3 = 286\) cách.

\( \Rightarrow n\left( \Omega \right) = 286\)

a) Gọi \(A\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu xanh”, \(B\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu đỏ”, \(C\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu vàng”

Vậy \(A \cup B \cup C\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu”

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^3 = 10\) cách.

\( \Rightarrow n\left( A \right) = 10 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega\right)}} = \frac{{10}}{{286}} = \frac{5}{{143}}\)

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^3 = 20\) cách.

\( \Rightarrow n\left( B \right) = 20 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{20}}{{286}} = \frac{{10}}{{143}}\)

Chọn ngẫu nhiên từ hộp 3 quả bóng trong tổng số 2 quả bóng vàng có 0 cách.

\( \Rightarrow n\left( C \right) = 0 \Rightarrow P\left( C \right) = 0\)

\( \Rightarrow P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) = \frac{{15}}{{243}}\)

b) Gọi \(D\) là biến cố “Có đúng 2 quả bóng xanh trong 3 quả bóng lấy ra”

Vậy \(A \cup D\) là biến cố “Có ít nhất 2 quả bóng xanh trong 3 quả bóng lấy ra”

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^2 = 10\) cách.

Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 8 quả bóng đỏ hoặc vàng có \({C}_8^1 = 8\) cách.

\( \Rightarrow n\left( D \right) = 10.8 = 80 \Rightarrow P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{80}}{{286}} = \frac{{40}}{{143}} \Rightarrow P\left( {A \cup D} \right) = P\left( A \right) + P\left( D \right) = \frac{{45}}{{143}}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 trang 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

Có \(7! = 5040\) cách sắp xếp 7 bạn ngồi vào 7 chiếc ghế \( \Rightarrow n\left( \Omega \right) = 5040\)

Gọi \(A\) là biến cố: “Bình vẫn ngồi đúng ghế cũ của mình”, \(B\) là biến cố “Minh vẫn ngồi đúng ghế cũ của mình”.

Vậy \(AB\) là biến cố “Cả Bình và Minh vẫn ngồi đúng ghế cũ của mình”, \(A \cup B\) là biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.

Xếp chỗ cho Bình ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.

\( \Rightarrow n\left( A \right) = 1.720 = 720 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)

Xếp chỗ cho Minh ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.

\( \Rightarrow n\left( B \right) = 1.720 = 720 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left(\Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)

Xếp chỗ cho cả Bình và Minh ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 5 bạn còn lại có \(5! = 120\) cách.

\( \Rightarrow n\left( {AB} \right) = 1.120 = 120 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{5040}} = \frac{1}{{42}}\)

\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{7} + \frac{1}{7} - \frac{1}{{42}} = \frac{{11}}{{42}}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 trang 97 (SGK Chân trời sáng tạo)

Hướng dẫn giải

a) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{3}\)

\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{30}}\)

b) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,5.P\left( A \right)\)

\(\begin{array}{l}P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) \Leftrightarrow 0,7 = P\left( A \right) + 0,5 - 0,5.P\left( A \right)\\ \Leftrightarrow 0,5P\left( A \right) = 0,2 \Leftrightarrow P\left( A \right) = 0,4\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)