a) Áp dụng công thức nhị thức Newton, ta có
\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\\ = \left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right] + \left[ {{{4.2}^3}.\left( {\sqrt 2 } \right) + 4.2.{{\left( {\sqrt 2 } \right)}^3}} \right]\\ = 68 + 48\sqrt 2 \end{array}\)
b) Áp dụng công thức nhị thức Newton, ta có
\({\left( {2 + \sqrt 2 } \right)^4} = {2^4} + {4.2^3}.\left( {\sqrt 2 } \right) + {6.2^2}.{\left( {\sqrt 2 } \right)^2} + 4.2.{\left( {\sqrt 2 } \right)^3} + {\left( {\sqrt 2 } \right)^4}\)
\({\left( {2 - \sqrt 2 } \right)^4} = \left( {2 +(- \sqrt 2 )} \right)^4= {2^4} + {4.2^3}.\left( { - \sqrt 2 } \right) + {6.2^2}.{\left( { - \sqrt 2 } \right)^2} + 4.2.{\left( { - \sqrt 2 } \right)^3} + {\left( { - \sqrt 2 } \right)^4}\)
Từ đó,
\(\begin{array}{l}{\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4} = 2\left[ {{2^4} + {{6.2}^2}.{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^4}} \right]\\ = 2\left( {16 + 48 + 4} \right) = 136\end{array}\)
c) Áp dụng công thức nhị thức Newton, ta có
\(\begin{array}{l}{\left( {1 - \sqrt 3 } \right)^5} = \left( {1 +(- \sqrt 3 )} \right)^5= 1 + 5.\left( { - \sqrt 3 } \right) + 10.{\left( { - \sqrt 3 } \right)^2} + 10.{\left( { - \sqrt 3 } \right)^3} + 5.{\left( { - \sqrt 3 } \right)^4} + 1.{\left( { - \sqrt 3 } \right)^5}\\ = \left[ {1 + 10.{{\left( { - \sqrt 3 } \right)}^2} + 5.{{\left( { - \sqrt 3 } \right)}^4}} \right] + \left[ {5.\left( { - \sqrt 3 } \right) + 10.{{\left( { - \sqrt 3 } \right)}^3} + 1.{{\left( { - \sqrt 3 } \right)}^5}} \right]\\ = 76 - 44\sqrt 3 \end{array}\)