Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vuvuffrurrrr

Khá giỏi giải nâng cao : Hai bài OK

Hơi KHó 1) Chứng minh rằng n3 - 61n : hết cho 6 với mọi n thuộc số tự nhiên hay ( N ) và n > 1

Rất KHÓ 2) Chứng minh rằng n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24 với mọi n thuộc số tự nhiên hay ( N ) và n > 1

AI học giỏi giải đúng 10000% nhá THANHK YOU

Nguyễn Việt Anh
27 tháng 11 2016 lúc 7:11

1) Giải

Vì n thuộc N và n > 1

Ta có : n3 - 61n = n3 - n - 60n = ( n3 - n ) - 60n

Ta có : n3 - n = n2.n - 1.n = n(n2 - 1) = n(n-1)n(n+1)

=> n3 - n = ( n + 1 )n( n - 1 ) : hết cho 6 với mọi n thuộc N và n > 1 thì ( n - 1 )n(n + 1 ) là tích của ba số tự nhiên liên tiếp

Ta có ; 60n : hết cho 6 với mọi n thuộc N và n > 1

Do đó ( n3 - n ) - 60n : hết cho 6 với mọi n thuộc N và n > 1

Vậy với n thuộc N và n > 1 thì n3 - 61n : hết cho 6

2) Giải

Ta có : n( n + 2 ) ( 25n2 - 1 )

=> n( n + 2 ) ( n2 + 24n2 - 1 )

=> n( n + 2 ) [ ( n2 - 1 ) + 24n2 ]

=> n( n + 2 ) ( n2 - 1 ) + n( n + 2 ) . 24n2

=> ( n -1 )n( n + 1 ) ( n + 2 ) + n( n + 2 ) . 24n2 (1)

Ta có : n( n + 2 ) . 24n2 : hết cho 24 mọi n

vì n thuộc N , n > 1 nên ( n - 1 )n( n + 1 ) ( n + 2 ) là tích của bốn số tự nhiên liên tiếp

=> ( n - 1 )n( n + 1 ) ( n + 2 ) : hết cho 8 và chi hết cho 3

ta có 8.3 = 24 và U7CLN( 8 ; 3 ) = 1 (2)

Do đó ( n - 1 ) n ( n + 1 ) ( n + 2 ) : hết cho 24 (3)

Từ (1) ; (2) và (3) => n( n + 2 ) ( 25n2 - 1 : hết cho 24 với mọi n thuộc N và n > 1

Vậy với mọi n thuộc N và n > 1 thì n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24

 


Các câu hỏi tương tự
nguyễn thùy linh
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Trần Duy Quân
Xem chi tiết
Huỳnh Thị Ngọc Nhung
Xem chi tiết