Đặt \(1-x=t\Rightarrow x=1-t\Rightarrow dx=-dt\)
\(\Rightarrow I=-\int\left(1-t\right)t^{20}.dt=\int\left(t^{21}-t^{20}\right)dt\)
\(=\dfrac{1}{22}t^{22}-\dfrac{1}{21}t^{21}+C=\dfrac{1}{22}\left(1-x\right)^{22}-\dfrac{1}{21}\left(1-x\right)^{21}+C\)
Đặt \(1-x=t\Rightarrow x=1-t\Rightarrow dx=-dt\)
\(\Rightarrow I=-\int\left(1-t\right)t^{20}.dt=\int\left(t^{21}-t^{20}\right)dt\)
\(=\dfrac{1}{22}t^{22}-\dfrac{1}{21}t^{21}+C=\dfrac{1}{22}\left(1-x\right)^{22}-\dfrac{1}{21}\left(1-x\right)^{21}+C\)
Cho \(\int\left(x\right)dx=x\sqrt{x^2+1}\). Tìm I=\(\int x.f\left(x^2\right)dx\)
1, \(\int\dfrac{x}{1-cos2x}dx\)
2, \(\int cos2x.e^{3x}dx\)
3, \(\int\left(2x+1\right)ln^2dx\)
4, \(\int\left(2x-1\right)cosxdx\)
5, \(\int\left(x^2+x+1\right)e^xdx\)
6, \(\int\left(2x+1\right)ln\left(x+2\right)dx\)
Cho \(\int f\left(x\right)dx=x\sqrt{x^2+1}.\: \)Tìm \(I=\int x.f\left(x^2\right)dx\)
Giải giúp em với, em cảm ơn
\(\int\dfrac{1}{cosx.cos\left(x+\dfrac{\pi}{4}\right)}dx\)
\(\int\dfrac{1}{x^3\left(1+x^2\right)}dx=\dfrac{a}{x^2}+blnx+cln\left(1+x^2\right).S=a+b+c=?\)
\(\int\dfrac{5-3x}{\left(x^2-5x+6\right)\left(x^2-2x+1\right)}dx=\dfrac{a}{x-1}-ln\left(\dfrac{x-b}{x-c}\right)+C.P=2a+b\)
\(\int\frac{x}{\left(1+2x\right)^3}dx\)
\(\int\frac{1-x^2}{x+x^3}dx\)
Tính các nguyên hàm sau :
a) \(\int x\left(3-x\right)^5dx\)
b) \(\int\left(2^x-3^x\right)^2dx\)
c) \(\int x\sqrt{2-5x}dx\)
d) \(\int\dfrac{\ln\left(\cos x\right)}{\cos^2x}dx\)
e) \(\int\dfrac{x}{\sin^2x}dx\)
\(\int\dfrac{x+1}{\left(x-2\right)\left(x+3\right)}dx\)
h) \(\int\dfrac{1}{1-\sqrt{x}}dx\)
i) \(\int\sin3x\cos2xdx\)
k) \(\int\dfrac{\sin^3x}{\cos^2x}dx\)
l) \(\int\dfrac{\sin x\cos x}{\sqrt{a^2\sin^2x+b^2\cos^2x}}dx\) (\(a^2\ne b^2\))
1) \(\int\left(\frac{lnx}{2+lnx}\right)^2\)
2) \(\int\frac{dx}{\left(x+3\right)^3\left(x+5\right)^5}\)
3) \(\int\frac{xdx}{\sqrt{1+\sqrt[3]{x^2}}}\)
4) \(\int\frac{dx}{x^3.\sqrt[3]{2-x^3}}\)
5)\(\int\sqrt[3]{\frac{2-x}{2+x}}.\frac{1}{\left(2-x\right)^2}dx\)
1, \(\int\dfrac{lnxdx}{\sqrt{x}}\)
2, \(\int ln\left(x+\sqrt{x^2+1}\right)dx\)
3, \(\int\left(x^2+2x+3\right)dx\)
Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính :
a) \(\int\left(1-2x\right)e^xdx\)
b) \(\int xe^{-x}dx\)
c) \(\int x\ln\left(1-x\right)dx\)
d) \(\int x\sin^2xdx\)
e) \(\int\ln\left(x+\sqrt{1+x^2}\right)dx\)
g) \(\int\sqrt{x}\ln^2xdx\)
h) \(\int x\ln\dfrac{1+x}{1-x}dx\)