Đặt \(\sqrt{mx}=u\Rightarrow x=\dfrac{u^2}{m}\Rightarrow dx=\dfrac{2udu}{m}\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow u=0\\x=m\Rightarrow u=\left|m\right|\end{matrix}\right.\)
\(I=\int\limits^{\left|m\right|}_0\left|\dfrac{u^4}{m^3}-u\right|.\dfrac{2u}{m}du\)
Xét hàm \(f\left(u\right)=\dfrac{u^4}{m^3}-u=\dfrac{u\left(u-m\right)\left(u^2+mu+m^2\right)}{m^3}\) với \(u\in\left(0;\left|m\right|\right)\)
Do \(u^2+mu+m^2>0\)
- Khi \(m< 0\Rightarrow u\left(u-m\right)>0\Rightarrow f\left(u\right)< 0\)
- Khi \(m>0\Rightarrow u\left(u-m\right)< 0\) ; \(\forall u\in\left(0;m\right)\Rightarrow f\left(u\right)< 0\)
\(\Rightarrow f\left(u\right)< 0\) ; \(\forall m\) và \(u\in\left(0;\left|m\right|\right)\)
\(\Rightarrow\left|f\left(u\right)\right|=-f\left(u\right)=u-\dfrac{u^4}{m^3}\)
\(\Rightarrow I=\int\limits^{\left|m\right|}_0\left(u-\dfrac{u^4}{m^3}\right)\dfrac{2u}{m}du=\int\limits^{\left|m\right|}_0\left(\dfrac{2}{m}u^2-\dfrac{2}{m^4}u^5\right)du\)
\(=\left(\dfrac{2}{3m}u^3-\dfrac{1}{3m^4}u^6\right)|^{\left|m\right|}_0=\dfrac{2\left|m^3\right|}{3m}-\dfrac{m^6}{3m^4}=3\)
\(\Leftrightarrow2m\left|m\right|-m^2=9\)
- Với \(m< 0\Rightarrow VT< 0\Rightarrow\) pt vô nghiệm
- Với \(m>0\Rightarrow m^2=9\Rightarrow m=3\)