\(a^3+b^3=637\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=637\Rightarrow a^2-ab+b^2=\frac{637}{13}=49\)\(\left(a+b\right)=13\Rightarrow\left(a+b\right)^2=13^2=169\Leftrightarrow a^2+2ab+b^2=169\)
Ta có: \(a^2-ab+b^2=49\left(1\right)\)
\(a^2+2ab+b^2=169\left(2\right)\)
Lấy (2) trừ 1 ta được 3ab=120=>ab=40
ab=40=>-ab=-40=>a2+b2=49+40=89
\(\left(a-b\right)^2=a^2-2ab+b^2=a^2+b^2-2ab=89-2.40=89-80=9\)Nhập kết quả: 9