Gọi \(BD\cap EF=\left\{I\right\}\)
Tam giác ABD có: IE // AB ( vì EF // AB )
I thuộc BD và E thuộc AD
\(\Rightarrow\dfrac{DE}{DA}=\dfrac{IE}{AB}=\dfrac{DI}{DB}\) ( hệ quả của định lý Talét )
\(\Rightarrow\dfrac{10}{35}=\dfrac{EI}{28}=\dfrac{DI}{DB}\)
\(\Rightarrow IE=\dfrac{10.28}{35}=8\left(cm\right)\)
Ta có \(\dfrac{DI}{DB}=\dfrac{10}{35}=\dfrac{2}{7}\left(cmt\right)\)
\(\Rightarrow\dfrac{BD-BI}{BD}=\dfrac{2}{7}\)
\(\Rightarrow1-\dfrac{BI}{BD}=\dfrac{2}{7}\Rightarrow\dfrac{BI}{BD}=\dfrac{5}{7}\)
Tam giác BCD có: IF // CD ( vì EF // CD )
F thuộc BC ; I thuộc DC
\(\Rightarrow\dfrac{FI}{CD}=\dfrac{BI}{BD}=\dfrac{5}{7}\) ( hệ quả của định lý Talét )
\(\Rightarrow FI=\dfrac{5.CD}{7}=\dfrac{5.70}{7}=50\left(cm\right)\)
\(\Rightarrow EF=IF+IE=8+50=58\left(cm\right)\)