\(\Rightarrow\left(x^2+2\right)^2=2x^4-4x^2+m\)
\(\Rightarrow m=-x^4+8x^2+4\)
BBT \(f\left(x\right)=-x^4+8x^2+4\Rightarrow4< m< 20\)
Phương trình ⇒ (x2 + 2)2 = 2x4 - 4x2 + m
⇔ m = - x4 + 8x2 + 4 (1)
(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = m và độ thị hàm số y = f(x) = - x4 + 8x2 + 4.
Đạo hàm : \(y'\) = - 4x3 + 16x = x (16 - 4x2) = x (4 - 2x) (4 + 2x)
y' = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
y' > 0 ⇔ x ∈ \(\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;\dfrac{1}{2}\right)\) (Đồng biến)
y' < 0 ⇔ x ∈ \(\left(-\dfrac{1}{2};0\right)\cup\left(\dfrac{1}{2};+\infty\right)\) (nghịch biến)
(1) có 4 nghiệm phân biệt khi y = m cắt y = f(x) tại 4 điểm phân biệt
⇔ f(0) < m < f\(\left(\dfrac{1}{2}\right)\)
⇔ 4 < m < 20