a: BH=CH=BC/2=12cm
\(AH=\sqrt{27^2-12^2}=3\sqrt{65}\left(cm\right)\)
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
Do đó: ΔAMH=ΔANH
=>AM=AN và HM=HN
=>AH là trung trực của MN
a: BH=CH=BC/2=12cm
\(AH=\sqrt{27^2-12^2}=3\sqrt{65}\left(cm\right)\)
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
Do đó: ΔAMH=ΔANH
=>AM=AN và HM=HN
=>AH là trung trực của MN
cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
Ai giúp em câu c và d vs ạ :(((
cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại C biết AB = 13 cm AC = 5 cm. Tia phân giác của góc A cắt cạnh BC tại E. kẻ EK vuông góc với AB tại K a, Tính BC. Chứng minh tam giác ACE bằng tam giác AKE b, so sánh CE và BE c, Kẻ CH vuông góc với AB tại H. Chứng mình CK là tia phân giác của góc HCB Cho mình câu trả lời nhanh với ạ
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
Tam giác ABC cân tại A,E là trung điểm của AB.Từ E kể M song song với BC,từ M kể MH //AB. a)tam giác EMH=tam giác HBE. b)so sánh HM và AE. c) tam giác AEM= Tam giác HMC. d)AH là đường trung trực của EM. e)AH vuông góc với BC. f) Bx là tia phân giác của góc ngoài tại B của tam giác ABC tia BX cắt AH tại I,CM:CI là tia phân giác góc ngoài tại C của tâm giác ABC
cho tam giác ABC có góc BAC>90 độ . Kẻ AH vuông góc BC tại H. Biết AB=15 cm, AC=41 cm, BH=12 cm . Tính độ dài cạnh HC
Cho ∆ABC cân tại A, kẻ AH ⊥ BC tại H.
a) Chứng minh rằng ∆ABH = ∆ACH
b) Giả sử AB = 8cm; BC = 6cm. Tính AH?
c) Kẻ HM ⊥ AB tại M, HN ⊥ AC tại N. Chứng minh MN // BC
d) Gọi I là trung điểm của MN, chứng minh rằng A, I, H thẳng hàng.