bạn chỉ cần gọi x\(^2\)=t(t\(\ge\)0)
ta có p/trình mới có dạng: a.t\(^2\)+b.t+c=0
giải phương trình bậc hai theo cách tính \(\Delta\)=b\(^2\)-4.a.c và xét dấu\(\Delta\)
Nếu delta nhỏ hơn 0 => pt vô nghiệm => ko tìm đc t=> ko tìm đc x
Nếu delta bằng 0 => pt có nghiệm kép t\(_1\)=t\(_2\)=\(\dfrac{-b}{2a}\)(xét điều kiện của t)=> thay t=\(\dfrac{-b}{2a}\)vào x\(^2\)=t ta tính đc: x=\(\sqrt{\dfrac{-b}{2a}}\)
Nếu delta lớn hơn 0 => pt có 2 nghiệm phân biệt t\(_1\)= \(\dfrac{-b+\sqrt{\Delta}}{2a}\)
t\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}\)
thay từng TH của t vào x\(^2\)=t tìm x và kết luận.
Chúc bạn hoc tốt!