Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật. Suy ra M, E, D thẳng hàng
Cho hình thang ABCD có hai đáy AB và CD (AB < CD) có AD = BC. Gọi E, F lần lượt là trung điểm của AD, BC. Qua E vẽ đường thẳng song song với CD, đường thẳng này cắt AC tại K.
a) Chứng minh K là trung điểm của AC
b) Chứng minh K thuộc đường thẳng EF.
c) Chứng minh rằng tứ giác ABCD là hình thang cân
cho hình thang ABCD có độ dài đáy lớn AB bằng 2 lần đáy nhỏ CD gọi I là trung điểm AB. Đường thẳng AD cắt BC tại E .
a) chứng minh AICD và BCDI là hình bình hành
b) chứng minh AD = DE
Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Cho hình thang ABCD (AB//CD). Gọi M, N lần lượt là trung điểm của AD và BC. Biết AB = 3cm và MN = 7 cm. Độ dài cạnh CD là:
A. 10cm
B. 5cm
C. 20cm
D. 11cm
.cho tam giac ABC. gọi M,N,I lần lượt là trung điểm còn các cạnh AB,BC,AC.CM AMIN là hình bình hành. b.gọi E đối xứng với I qua N.CM AE//IC c.gọi K là trung Diểm của AI CM B,K,E thẳng hàng.
Cho hình vuông ABCD, \(E\in AB;F\in AD\) sao cho AE=DF. Gọi M, N lần lượt là trung điểm của EF, CE. Chứng minh \(MN\perp DE\) và \(MN=\dfrac{1}{2}DE\)
Cho hình bình hành ABCD. Gọi E; F và O lần lượt là trung điểm của AB; CD và BD. Gọi I và K là
điểm bất kì trên AD và BC.
a) Chứng minh AI song song CK. b) Chứng minh AE = FC.
c) Chứng minh A; O và C thẳng hàng.