diện tích hình phẳng giới hạn bởi các đường y=-x^2+2 , y=căn bậc 2 của (1-x^2) và ox là
Tính diện tích hình phẳng S giới hạn bởi đồ thị hàm số y=-x3+3x2-2 và đồ thị hàm số y=-x-2
diện tích hình phẳng giới hạn bởi đồ thị y=x^2-4x+5 và tiếp tuyến với đồ thị hàm số tại A(1;2) B(4;5) có kết quả dạng a/b khi đó a+b bằng
tìm m để đồ thị hàm số \(y=x^4-2mx^2+2m+m^4\) có 3 điểm cực trị là đỉnh của một tam giác có diện tích bằng 4
Tìm các giá trị thực của tham số m để đường thẳng d: y= 2x +2y -1=0 cắt đồ thị (Cm): Y=( -x+m)/(x+2) tại hai điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng 1 (O là gốc tọa độ)
Cho hàm số y=(2x+1)/(x+1) (C).tìm m để (d) y=-2x+m cắt (C) tại 2 điểm AB sao cho diện tích tam giác OAB =căn ba.!!!!ai giúp mình với.chỉ mình cái chỗ tìm khoảng cách d(O,AB) ák!!!
Tìm giao điểm của đường thẳng d (x-1)/2=y+1/-1=z/3 và mặt phẳng 2x-y+3z-4=0
Trong mặt phẳng Oxy, cho điểm A(1;2), B(2;4), C(−1;3) và đường thẳng (d) : x + y - 5 = 0 và đường tròn (C) : ((x - 2) ^ 2) + (y + 1) ^ 2 = 4 . a. Tìm ảnh của vec A qua phép tịnh tiến theo vec v = (3; 1) . b. Tìm đường thẳng (d') là ảnh của đường thẳng (d) qua phép tịnh tiến theo a = 3i - 2j C. Tìm đường tròn (C') là ảnh của đường tròn (C) qua phép tịnh tiến theo AB . d. Tìm vec u, biết T vec u (B) = C
tìm tất cả các giá trị của tham số m đẻ đường thẳng(d): y=-2x+4 cắt đồ thị hàm số y=x^2+2mx+1-3m tại A và B sao cho tam giác OAB có diện tích bằng 12\(\sqrt{2}\)