a) x - \(\dfrac{20}{11.13}-\dfrac{20}{13.15}-...-\dfrac{20}{53.55}\)=\(\dfrac{3}{11}\)
\(x-\left(\dfrac{20}{11.13}+\dfrac{20}{13.15}+...+\dfrac{20}{53.55}\right)=\dfrac{3}{11}\)
\(x-10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(x-10\left(\dfrac{1}{11}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(x-10.\dfrac{4}{55}=\dfrac{3}{11}\)
\(x-\dfrac{8}{11}=\dfrac{3}{11}\)
\(x=\dfrac{3}{11}+\dfrac{8}{11}\)
\(x=1\)
Vậy \(x=1\)
b) \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(2\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow\) \(x+1=18\)
\(x=18-1\)
\(x=17\)
Vậy \(x=17\)