Giải:
Ta có: \(A=\dfrac{2011+2012}{2012+2013}\)
\(=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)
Áp dụng tính chất \(\dfrac{a}{b}>\dfrac{a}{b+m}\left(m>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2011}{2012}>\dfrac{2011}{2012+2013}\\\dfrac{2012}{2013}>\dfrac{2012}{2012+2013}\end{matrix}\right.\)
Cộng vế theo vế ta được:
\(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2012+2013}\) \(+\dfrac{2012}{2012+2013}\)
\(=\dfrac{2011+2012}{2012+2013}=A\)
Vậy \(A< B\)