a: f(x)=|5x-4|
b: f(x)=6
=>|5x-4|=6
=>5x-4=6 hoặc 5x-4=-6
=>5x=10 hoặc 5x=-2
=>x=2 hoặc x=-2/5
a: f(x)=|5x-4|
b: f(x)=6
=>|5x-4|=6
=>5x-4=6 hoặc 5x-4=-6
=>5x=10 hoặc 5x=-2
=>x=2 hoặc x=-2/5
. Cho hàm số được xác định như sau : y = f(x) = \(\left\{\dfrac{x+1\text{ khi }\ge0}{-x+1\text{ khi }< 0}\right\}\)
a) Tính f(3); f(-3).
b) Có cách nào viết gọn công thức trên không ?
Hàm số y = f(x) được cho bởi các công thức sau. Tìm giá trị của x để vế phải của công thức có nghĩa.
a) y = \(\dfrac{2x}{\left|x\right|-2}\)
b) y = |x| + |x - 1|
c) y = \(\dfrac{2x}{1-x}-\dfrac{1}{2x+1}\)
Hàm số \(y=f\left(x\right)\) được cho bởi công thức \(f\left(x\right)=2x^2-5\)
Hãy tính : \(f\left(1\right);f\left(-2\right);f\left(0\right);f\left(2\right)\) ?
Hàm số \(y=f\left(x\right)\) được cho bởi công thức \(y=3x^2-7\)
a) Tìm giá trị của x tương ứng với các giá trị của y lần lượt bằng: \(-4;5;-6\dfrac{2}{3}\)
Helpppppppppppppppppppp
Cho hàm số f được xác định bởi công thức : y = |x|
a) Tính \(f\left(0\right);f\left(\dfrac{3}{2}\right);f\left(7\right);f\left(-1\right);f\left(-5\right)\)
b) Tìm x biết f(x) = 2
tìm x:
(1)
a) \(x+\dfrac{2}{3}=\dfrac{-1}{12}\)
b)\(\left(2x+1\right)^2=9\)
(2) cho hàm số y=f(x)=2x2+4. Tính f(2);f(-1)
2. Một hàm số được cho bằng bảng sau :
X | -2 | -1 | \(-\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | 1 | 2 | 2 |
Y | 1 | \(\dfrac{1}{2}\) | \(\dfrac{1}{4}\) | 0 | \(-\dfrac{1}{4}\) | \(-\dfrac{1}{2}\) | -1 | \(-1\dfrac{1}{2}\) |
a) Tìm f( 1); − f(1) ; f(2).
b) Hàm số này có thể được cho bằng công thức nào ?
Cho hàm số y = f(x) xác định bởi công thức : y = f(x) =\(\dfrac{2}{3}\)x+6
Tính các giá trị của x tương ứng với giá trị của y = 5, y = –4
Cho hàm số xác đinh \(f\left(x\right)=x^2-5x+6\)
Tính \(f\left(2\right);f\left(3\right)\)
Xác định x để \(f\left(x\right)=6\)