Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Trang

Help me😭😭

Cho pt x^2-2mx-2m-5=0( m là tham số)

1/ CMR pt luôn có 2 nghiệm phân biệt với mọi giá trị của m

2/ tìm m để | x1-x2 | đạt giá trị nhỏ nhất ( x1,x2 là nghiệm của pt)

DƯƠNG PHAN KHÁNH DƯƠNG
16 tháng 7 2018 lúc 18:37

1 ) \(\Delta=\left(-2m\right)^2-4.\left(-5\right)=4m^2+20>0\)

\(\Delta>0\) . Nên phương trình luôn có hai nghiệm phân biệt với mọi m

2 ) Theo định lý vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-2m-5\end{matrix}\right.\)

Đặt : \(A=\left|x_1-x_2\right|\)

\(\Rightarrow A^2=\left(x_1-x_2\right)^2\)

\(=x_1^2+x_2^2-2.x_1.x_2\)

\(=\left[\left(x_1+x_2\right)^2-2.x_1.x_2\right]-2.x_1.x_2\)

\(=\left[\left(2m\right)^2-2.\left(-2m-5\right)\right]-2.\left(-2m-5\right)\)

\(=4m^2+4m+10+4m+10\)

\(=4m^2+8m+20\)

\(=4\left(m^2+2m+5\right)\)

\(=4\left[\left(m^2+2m+1\right)+4\right]\)

\(=4\left[\left(m+1\right)^2+4\right]\)

Do : \(\left(m+1\right)^2\ge0\Rightarrow4\left[\left(m+1\right)^2+4\right]\ge16\)

Hay \(A^2\ge16\Leftrightarrow A\ge4\)( Vì \(A\ge0\) )

Vậy GTNN của \(\left|x_1-x_2\right|\) là 4 khi \(\left(m+1\right)^2=0\Leftrightarrow m=-1\)

Chúc bạn học tốt !!

thái hoàng
16 tháng 7 2018 lúc 18:13

den ta =4m^2 +20>0 <luon dung voi moi x thuoc R>

ket luan pt luon co 2 nghiem phan biet voi moi m

b, voi moi m pt co 2 nghiem phan biet

theo viet x1+x2=2m

x1nh2 = -5

[|x1-x2|]^2=x1^2+x2^2-2x1x2

=[x1+x2]^2-4x1x2

=4m^2+20lon hon hoac bang 20

dau bang xay ra khi chi khi m =0


Các câu hỏi tương tự
Trang Trang
Xem chi tiết
Maneki Neko
Xem chi tiết
Limited Edition
Xem chi tiết
Nguyễn Tuấn Duy
Xem chi tiết
Tuấn Lê
Xem chi tiết
JoJo
Xem chi tiết
Xxyukitsune _the_moonwol...
Xem chi tiết
nguyễn văn quốc
Xem chi tiết
Hoàng Thị Hương Giang
Xem chi tiết