\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=81\\xy+yz+xz=27\\\dfrac{xy+xz+zy}{xyz}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+xz\right)=81\\xy+yz+xz=27\\xyz=27\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=27\\xy+yz+xz=27\\xyz=27\end{matrix}\right.\Leftrightarrow x^2+y^2+z^2=xy+yz+xz=xyz\)
theo bđt ta có \(x^2+y^2+z^2\ge xy+xz+yz\)
để \(x^2+y^2+z^2=xy+xz+yz\) khi \(x=y=z=3\)