Chu vi hình vuông là \(4x\)
Chu vi hình chữ nhật là \(2.[x+(x + 1)]\)
\( \Rightarrow \) Tổng chu vi 2 hình là : \({4x}+2.[x.(x + 1)] = 4x + 2(2x+1) = 4x +4x + 2 = 8x+2\)
Chu vi hình vuông là \(4x\)
Chu vi hình chữ nhật là \(2.[x+(x + 1)]\)
\( \Rightarrow \) Tổng chu vi 2 hình là : \({4x}+2.[x.(x + 1)] = 4x + 2(2x+1) = 4x +4x + 2 = 8x+2\)
Hình 2 gồm một hình chữ nhật có chiều dài 4x cm, chiều rộng 2x cm và hình vuông nhỏ bên trong có cạnh x cm. Hãy lập biểu thức biểu thị diện tích của phần được tô màu vàng trong Hình 2.
Viết biểu thức biểu thị chu vi của hình thang cân trong Hình 3.
Cho hình vuông cạnh 2x và bên trong là hình chữ nhật có độ dài hai cạnh là x và 3 (Hình 5). Tìm đa thức theo biến x biểu thị diện tích của phần được tô màu xanh.
Cho tam giác (xem Hình 4) có chu vi bằng 12t – 3. Tìm cạnh chưa biết của tam giác đó.
Cho đa thức \(P(x) = {x^3} - 4{x^2} + 8x - 2\). Hãy viết P(x) thành tổng của hai đa thức bậc bốn.
Cho hai đa thức P(x) = \( - 3{x^4} - 8{x^2} + 2x\) và Q(x) = \(5{x^3} - 3{x^2} + 4x - 6\).
Hãy tính P(x) + Q(x) và P(x) – Q(x).
Cho hai đa thức P(x) = \(7{x^3} - 8x + 12\) và Q(x) = \(6{x^2} - 2{x^3} + 3x - 5\). Hãy tính P(x) + Q(x) bằng hai cách.
Cho hai đa thức P(x) = \(2{x^3} - 9{x^2} + 5\) và Q(x) = \(2{x^2} + 4{x^3} - 7x\). Hãy tính P(x) – Q(x) bằng hai cách.
Cho ba đa thức P(x) = \(9{x^4} - 3{x^3} + 5x - 1\)
Q(x) = \( - 2{x^3} - 5{x^2} + 3x - 8\)và R(x) = \( - 2{x^4} + 4{x^2} + 2x - 10\)
Tính P(x) + Q(x) + R(x) và P(x) – Q(x) – R(x)