Bài 2: Tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiều Thảo

Hãy chon mệnh đề sai dưới đây:(mn chọn rồi giải thích từng đáp án giúp e với ạ, có thể bỏ qua đáp án A , còn đáp án B tại sao x phải >0 ạ , đáp án C e ko chắc lắm nên mn cứ gthich đi ạ, còn đáp án D có phải thêm đk của c không hay như vậy vẫn đúng ạ )

A. \(\int\limits^1_0x^2dx\ge\int\limits^1_0x^3dx\)

B. đạo hàm của F(x)= \(\int\limits^x_1\dfrac{dt}{1+t}\) là F'(x)= \(\dfrac{1}{1+x}\) (x>0)

C.hàm số f(x) liên tục trên \([-a;a]\) thì \(\int\limits^a_{-a}f\left(x\right)dx=2\int\limits_0^af\left(x\right)dx\)

D.nếu f(x) liên tục trên R thì \(\int\limits^b_af\left(x\right)dx+\int\limits^c_bf\left(x\right)dx=\int\limits^c_af\left(x\right)dx\)

Akai Haruma
17 tháng 1 2018 lúc 23:31

Lời giải:

\(\int ^{1}_{0}x^2dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}; \int ^{1}_{0}x^3dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^4}{4}=\frac{1}{4}\)

\(\frac{1}{3}>\frac{1}{4}\Rightarrow A\) đúng.

Câu B. Xét về mặt điều kiện thì với \(x>0\Rightarrow \frac{1}{x+1}\) luôn có nghĩa, lúc này hàm số mới có tích phân được.

Xét theo định nghĩa nguyên hàm thì luôn đúng vì \(F(x)=\int f(x)dx\Leftrightarrow f(x)=F'(x)\)

Câu D.

\(\int ^b_af(x)dx+\int ^c_bf(x)dx=F(b)-F(a)+F(c)-F(b)\)

\(=F(c)-F(a)=\int ^c_af(x)dx\)

Do đó D đúng.

Do đó câu C sai.

Nếu \(\int ^a_{-a}f(x)dx=2\int ^{a}_0f(x)dx\)

\(\Leftrightarrow F(a)-F(-a)=2F(a)-2F(0)\)

\(\Leftrightarrow F(a)+F(-a)=2F(0)\)

Giả sử cho \(F(x)=x^2\), \(a\neq 0\)thì điều trên hiển nhiên vô lý

Do đó C sai.


Các câu hỏi tương tự
Sonyeondan Bangtan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hùng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Hùng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết